Cationic Aluminum Alkyl Complexes Incorporating Amidinate Ligands. Transition-Metal-Free Ethylene Polymerization Catalysts

Martyn P. Coles and Richard F. Jordan*

Department of Chemistry, The University of Iowa Iowa City, Iowa 52242

Received June 3, 1997

Cationic aluminum species of the general type $AlLX_2^+$ (L = neutral 2-electron donor, X = anionic 2-electron donor) and the corresponding base-stabilized adducts $AlLX_2(L')^+$ (L' = labile Lewis base) are of interest for application in catalysis and synthesis because the combination of an electrophilic cationic Al center and a potentially reactive Al-X bond should promote coordination and activation of a range of substrates.¹ Known cationic aluminum compounds include 5- to 7-coordinate (chelate) AlX_2^+ species containing polydentate ether/amine or tetradentate Schiff-base ligands,^{2,3} 4-coordinate species incorporating chelating ligands,⁴ (amine)₂ AlX_2^+ compounds,⁵ AlX_2 -(THF)₄⁺ complexes (X = H, Cl),⁶ and (C₅R₅)₂ Al^+ aluminocenium cations.⁷ Here we describe a strategy for the design of reactive 3-coordinate cationic aluminum alkyl compounds which are capable of polymerizing ethylene.

Neutral, d⁰, group 4 metal L_nMR_2 complexes (L_n = ancillary ligands, e.g. Cp₂) can be activated for olefin polymerization and other reactions by conversion to $L_nMR(L')^+$ or L_nMR^+ cations.⁸ We reasoned that (L–X)AlR₂ compounds containing a suitable bidentate, monoanionic ancillary ligand L–X⁻ could be ionized to (L–X)AlR(L')⁺ or (L–X)AlR⁺ cations using methods developed for transition metal systems. *N*,*N'*-Dialkylamidinates, RC(NR')₂⁻, are attractive ligands for this application because they possess the correct charge and metal binding properties and can be sterically and electronically tuned by modification of the R and R' groups. Several neutral Al compounds containing MeC(NSiMe₃)₂⁻, PhC(NSiMe₃)₂⁻, or MeC(N'Pr)₂⁻ ligands have been described,⁹ and we have developed general routes to {RC(NR')₂}AlMe₂ compounds (R = Me, R' = 'Pr, Cy; R = 'Bu, R' = 'Pr, Cy, SiMe₃).¹⁰

(3) (a) Atwood, D. A.; Jegier, J. A.; Rutherford, D. *Inorg. Chem.* **1996**, *35*, 63. (b) Atwood, D. A.; Jegier, J. A.; Rutherford, D. *J. Am. Chem. Soc.* **1995**, *117*, 6779.

(4) (a) Engelhardt, L. M.; Kynast, U.; Raston, C. L.; White, A. H. Angew. Chem., Int. Ed. Engl. 1987, 26, 681. (b) Uhl, W.; Wagner, J.; Fenske, D.; Baum, G. Z. Anorg. Allg. Chem. 1992, 612, 25. (c) Emig, N.; Réau, R.; Krautscheid, H.; Fenske, D.; Bertrand, G. J. Am. Chem. Soc. 1996, 118, 5822.

(5) (a) Atwood, D. A.; Jegier, J. A. J. Chem. Soc., Chem. Commun. **1996**, 1507. (b) Jegier, J. A.; Atwood, D. A. Inorg. Chem. **1997**, 36, 2034.

(6) (a) Knjazhansky, S. Y.; Nomerotsky, I. Y.; Bulychev, B. M.; Belsky, V. K.; Soloveichik, G. L. *Organometallics* **1994**, *13*, 2075. (b) Means, N. C.; Means, C. M.; Bott, S. G.; Atwood, J. L. *Inorg. Chem.* **1987**, *26*, 1466.

(7) (a) Dohmeier, C.; Schnöckel, H.; Robl, C.; Schneider, U.; Ahlrichs,
R. Angew. Chem., Int. Ed. Engl. 1993, 32, 1655. (b) Bochmann, M.;
Dawson, D. M. Angew. Chem., Int. Ed. Engl. 1996, 35, 2226.

(8) (a) Jordan, R. F. Adv. Organomet. Chem. **1991**, *32*, 325. (b) Guram, A. S.; Jordan, R. F. In Comprehensive Organometallic Chemistry, 2nd ed.; Lappert, M. F., Ed.; Pergamon: Oxford, 1995; Vol. 4, pp 589–625. (c) Bochmann, M. J. Chem. Soc., Dalton Trans. **1996**, 255. (d) Marks, T. J. Acc. Chem. Res. **1992**, 25, 57.

(9) (a) Lechler, R.; Hausen, H.-D.; Weidlein, J. J. Organomet. Chem. **1989**, 359, 1. (b) Ergezinger, C.; Weller, F.; Dehnicke, K. Z. Naturforsch. **1988**, 43b, 1621. (c) Kottmair-Maieron, D.; Lechler, R.; Weidlein, J. Z. Anorg. Allg. Chem. **1991**, 593, 111. (d) Duchateau, R.; Meetsma, A.; Teuben, J. H. J. Chem. Soc., Chem. Commun. **1996**, 223.

The reaction of $\{MeC(N^{i}Pr)_{2}\}AlMe_{2}$ (1a) with 1 equiv of $B(C_6F_5)_3^{11}$ at 23 °C in CD₂Cl₂ results in the formation of a new aluminum complex, [2a][MeB(C₆F₅)₃], and consumption of half of the boron activator (by ¹¹B NMR). The analogous reaction employing 0.5 equiv of B(C₆F₅)₃ produces [2a][MeB(C₆F₅)₃] in 83% isolated yield (white solid) with total consumption of the boron reagent. The reaction of 1a and 1.0 or 0.5 equiv of $[Ph_3C][B(C_6F_5)_4]^{12}$ under similar conditions yields $[2a][B(C_6F_5)_4]$ and MeCPh₃. The variable temperature ¹H and ¹³C NMR spectra of $[2a][MeB(C_6F_5)_3]$ and $[2a][B(C_6F_5)_4]$ are identical except for the anion resonances, and establish that $2a^+$ is the dinuclear Me-bridged cation $[({MeC(N^{i}Pr)_{2}}AlMe)_{2}(\mu-Me)]^{+}$ (Scheme 1). The -20 °C ¹H NMR spectrum of $2a^+$ contains two singlets at δ -0.15 and -0.57 in a 2:1 intensity ratio, which are assigned to the terminal and bridging methyl groups, respectively. These signals coalesce to a broad singlet ($\delta - 0.38$) at 23 °C, indicating that bridge/terminal methyl exchange is rapid under these conditions. The ¹H NMR spectrum of a solution of [2a][MeB(C₆F₅)₃] containing 0.5 equiv of 1a (CD₂-Cl₂, 23 °C) contains resonances for each component which are identical with those observed for separate solutions of the components, implying that the bridge/terminal exchange of $2a^+$ is intramolecular. ¹H NMR spectra of $2a^+$ below -60 °C are more complex and are consistent with the presence of a 1:1 mixture of two slowly exchanging rotamers (anti-Me and gauche-Me).13

The formation of $2a^+$ from 1a involves initial generation of the 3-coordinate {MeC(N^{*i*}Pr)₂}AlMe⁺ cation, which is rapidly trapped by adduct formation with 1a. Bochmann found that analogous metallocene species {Cp₂M(Me)}₂(μ -Me)⁺ (M = Ti, Cp = indenyl; M = Zr or Hf, Cp = C₅H₅, Me₂Si(indenyl)₂ or C₂H₄(indenyl)₂), are formed in a similar manner; however, in contrast to $2a^+$, these species are converted to Cp₂M(Me)⁺ cations by reaction with additional activator under mild conditions.¹⁴ Recently Marks isolated several dinuclear cationic metallocenes of this type.¹⁵

Replacement of the amidinate methyl substituent of 1a by a ^tBu group in **3a,b** (Scheme 2) causes an 8° reduction in the Al-N-R' bond angles and thus increases the steric congestion at Al.¹⁰ We anticipated that this effect would disfavor the formation of dinuclear cations. Indeed, the reaction of 3a,b with 1 equiv of $B(C_6F_5)_3$ generates the base free ion pairs [{^t- $BuC(NR')_{2}$ AlMe][MeB(C₆F₅)₃] (4a,b) in quantitative NMR yield (Scheme 2). The ¹H and ¹³C NMR spectra of **4a**,**b** contain resonances for the NR' groups which are consistent with C_s symmetric structures. The ¹H NMR spectra (CD₂ClCD₂Cl, 23 °C) of **4a** and **4b** both contain a $MeB(C_6F_5)_3^-$ resonance at δ 1.67, which is significantly downfield from the free anion resonance (δ 0.5).¹¹ Additionally, the ¹³C and ¹⁹F NMR spectra of 4a,b contain two sets of C₆F₅ resonances (2:1 ratio in the ¹⁹F NMR spectrum). These data for **4a**,**b** are consistent with structures in which the anion coordinates to Al by a B-Me-Al bridge and rotation about the B-Me-Al linkage is slow due to steric crowding. Initial efforts to isolate 4b gave ${^{t}BuC(NCy)_{2}}Al(Me)(C_{6}F_{5})$, showing that anion degradation can occur in these systems. Efforts to isolate 4a,b are continuing. Lewis base adducts ${RC(NR')_2}Al(Me)(L')^+$ have been

(14) (a) Bochmann, M.; Lancaster, S. J. J. Organomet. Chem. **1992**, 434, C1. (b) Bochmann, M.; Lancaster, S. J. Angew. Chem., Int. Ed. Engl. **1994**, 33, 1634.

(15) Chen, Y.-X.; Stern, C. L.; Yang, S.; Marks, T. J. J. Am. Chem. Soc. 1996, 118, 12451.

^{(1) (}a) Eisch, J. J. In *Comprehensive Organometallic Chemistry*, 2nd ed.; Housecroft, C. E., Ed.; Pergamon: Oxford, 1995; Vol. 1, pp 431–502. (b) Eisch, J. J. In *Comprehensive Organometallic Chemistry*, 2nd ed.; McKillop, A., Ed.; Vol. 11, pp 277–311.

^{(2) (}a) Self, M. F.; Pennington, W. T.; Laske, J. A.; Robinson, G. H. Organometallics 1991, 10, 36. (b) Richey, H. G., Jr.; BergStresser, G. L. Organometallics 1988, 7, 1459. (c) Bott, S. G.; Alvanipour, A.; Morley, S. D.; Atwood, D. A.; Means, C. M.; Coleman, A. W.; Atwood, J. L. Angew. Chem., Int. Ed. Engl. 1987, 26, 485. (d) Bott, S. G.; Elgamal, H.; Atwood, J. L. J. Am. Chem. Soc. 1985, 107, 1796. (e) Atwood, J. L.; Bott, S. G.; May, M. T. J. Coord. Chem. 1991, 23, 313.

⁽¹⁰⁾ Coles, M. P.; Swenson, D. C.; Jordan, R. F.; Young, U. G., Jr. Submitted for publication.

⁽¹¹⁾ Yang, X.; Stern, C. L.; Marks, T. J. J. Am. Chem. Soc. 1994, 116, 10015.

⁽¹²⁾ Chien, J. C. W.; Tsai, W.-M.; Rausch, M. D. J. Am. Chem. Soc. 1991, 113, 8570.

⁽¹³⁾ The expected statistical ratio of the anti-Me and gauche-Me rotamers of $2a^+$ is 1:2. The preference for the anti-Me rotamer results from steric interactions between the bulky *i*Pr groups.

Scheme 1

Scheme 2

generated in NMR scale reactions. The reactions of **1a** or **3a**,**b** with 1 equiv of [HNMe₂Ph][B(C₆F₅)₄]¹⁶ yield the corresponding amine adducts [{RC(NR')₂}Al(Me)(NMe₂Ph)][B(C₆F₅)₄] (**5a**, **6a**,**b**; Schemes 1 and 2). The ¹H and ¹³C NMR spectra of **5a** and **6a**,**b** (23 °C) contain amine resonances which are shifted from those of the free amine, and resonances for the R' groups which imply C_s -symmetric structures. These results are consistent with amine coordination to Al. The reaction of [**2a**]-[MeB(C₆F₅)₃] with 0.5 equiv of NMe₂Ph generates a 1:1 mixture of **1a** and **5a**. Similarly, the reaction of [**2a**][MeB(C₆F₅)₃] or **5a** with excess PMe₃ generates the phosphine adduct [{MeC(NⁱPr)₂}AlMe(PMe₃)][A⁻] (**7a**⁺, A⁻ = MeB(C₆F₅)₃⁻ or B(C₆F₅)₄⁻), with liberation of 1 equiv of **1a** or NMe₂Ph. These ligand exchange reactions show that the order of Lewis basicity toward {MeC(NⁱPr)₂}AlMe⁺ is PMe₃ > NMe₂Ph > **1a** > A⁻.

One potential application of {RC(NR')₂}AlR⁺ cations is as transition-metal-free olefin polymerization catalysts. Neutral aluminum alkyls catalyze the oligomerization of ethylene to C₈– C₁₄ α -olefins at ethylene pressures above 80 atm and temperatures of 90–120 °C.¹⁷ Monomeric AlR₃ species catalyze the chain growth by repetitive insertion, and the low molecular weight results from rapid β -H elimination.^{1a,18} Recently, on the basis of comparisons of group 4 metal Cp₂MR⁺ and (C₂B₉H₁₁)CpMR catalysts, we proposed that a cationic charge on the active species should inhibit β -H elimination by

strengthening the M-C bond (other factors being equal).¹⁹ In initial studies, we have found that CD_2Cl_2 solutions of [2a]- $[MeB(C_6F_5)_3]$ (50 °C) or 4a (23 °C) polymerize ethylene (≤ 1 atm) with low activity. Toluene solutions of 4a polymerize ethylene (2 atm) to solid polyethylene at 60 °C (activity = 700 g PE/(mol·h·atm); $M_{\rm w} = 176\ 100; \ M_{\rm w}/M_{\rm n} = 2.84;$ DSC mp 138.2 °C). More active catalysts are generated by activation of 3a with 1 equiv of [Ph₃C][B(C₆F₅)₄] in toluene (2 atm of ethylene; 60 °C: activity 2480 g PE/(mol·h·atm); $M_{\rm w} =$ 272 200; $M_{\rm w}/M_{\rm n} = 3.30$; DSC mp 139.6 °C; 85 °C: activity 3050 g PE/(mol·h·atm); $M_{\rm w} = 184700; M_{\rm w}/M_{\rm n} = 2.23;$ DSC mp 138.2 °C). Our current interpretation of these results is that 3-coordinate $\{RC(NR')_2\}AIR^+$ cations are the active species in these polymerizations, and that the activities are strongly influenced by coordination of $\{RC(NR')_2\}AIMe_2$ or A^- to these species and, in the $MeB(C_6F_5)_3^-$ systems, by anion degradation. The high molecular weights and narrow molecular weight distributions are consistent with a single site catalyst with a high $k_{\text{chain-growth}}/k_{\text{chain-transfer}}$ ratio.

This work establishes that $(\{MeC(N^{i}Pr)_{2}\}AlMe)_{2}(\mu-Me)^{+}$ and $\{RC(NR')_{2}\}AlMe(L')^{+}$ cations and $[\{^{i}BuC(NR')_{2}\}AlMe][MeB-(C_{6}F_{5})_{3}]$ ion pairs are formed by alkyl abstraction from $\{RC-(NR')_{2}\}AlMe_{2}$, and suggests that $\{RC(NR')_{2}\}AlR^{+}$ cations are active species in ethylene polymerization. Efforts to isolate base free $[\{RC(NR')_{2}\}AlR][A]$ salts and to develop even more reactive Al-based catalysts are in progress.

Acknowledgment. This work was supported by the Department of Energy Grant DE-FG02-88ER13935. M.P.C. was supported by a NATO postdoctoral research fellowship. Gifts of $B(C_6F_5)_3$ (Boulder Scientific) and $[Ph_3C][B(C_6F_5)_4]$ (Asahi Glass) are gratefully acknowledged.

Supporting Information Available: Synthetic procedures, characterization data for new compounds, and a listing of ethylene polymerization results (10 pages). See any current masthead page for ordering and Internet access instructions.

JA971815J

⁽¹⁶⁾ Turner, H. W. Eur. Pat. Appl. 0 277 004, 1988.

⁽¹⁷⁾ Ziegler, K.; Gellert, H.-G.; Zosel, K.; Holzkamp, E.; Schneider, J.; Söll, M.; Kroll, W.-R. Justus Liebigs Ann. Chem. **1960**, 629, 121.

⁽¹⁸⁾ Recently, Martin reported the formation of linear polyethylene ($M_w = ca. 10^6$, activities 1.6×10^{-1} to 2.1×10^{-4} g PE/(mol·h·atm)) from the reaction of Cl₂AlCH(Me)AlCl₂ or (AlR₃)₂ with ethylene at 25–50 °C to reduce the rate of β -H elimination. See: Martin, H.; Bretinger, H. *Makromol. Chem.* **1992**, *193*, 1283.

⁽¹⁹⁾ Kreuder, C.; Jordan, R. F.; Zhang, H. Organometallics **1995**, *14*, 2993 and references therein.